3.443 \(\int \frac{\sqrt{a d e+(c d^2+a e^2) x+c d e x^2}}{x^3 (d+e x)} \, dx\)

Optimal. Leaf size=202 \[ \frac{\left (c d^2-a e^2\right ) \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}}-\frac{\left (\frac{c}{a e}-\frac{3 e}{d^2}\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 x}-\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2} \]

[Out]

-Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(2*d*x^2) - ((c/(a*e) - (3*e)/d^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2])/(4*x) + ((c*d^2 - a*e^2)*(c*d^2 + 3*a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqr
t[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*a^(3/2)*d^(5/2)*e^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.275852, antiderivative size = 202, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 40, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.125, Rules used = {849, 834, 806, 724, 206} \[ \frac{\left (c d^2-a e^2\right ) \left (3 a e^2+c d^2\right ) \tanh ^{-1}\left (\frac{x \left (a e^2+c d^2\right )+2 a d e}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}}-\frac{\left (\frac{c}{a e}-\frac{3 e}{d^2}\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{4 x}-\frac{\sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}{2 d x^2} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^3*(d + e*x)),x]

[Out]

-Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(2*d*x^2) - ((c/(a*e) - (3*e)/d^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x
 + c*d*e*x^2])/(4*x) + ((c*d^2 - a*e^2)*(c*d^2 + 3*a*e^2)*ArcTanh[(2*a*d*e + (c*d^2 + a*e^2)*x)/(2*Sqrt[a]*Sqr
t[d]*Sqrt[e]*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])])/(8*a^(3/2)*d^(5/2)*e^(3/2))

Rule 849

Int[((x_)^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[x^n*(a/d + (c*
x)/e)*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b
*d*e + a*e^2, 0] &&  !IntegerQ[p] && ( !IntegerQ[n] ||  !IntegerQ[2*p] || IGtQ[n, 2] || (GtQ[p, 0] && NeQ[n, 2
]))

Rule 834

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Dist[1/((m
 + 1)*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1)
 + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])

Rule 806

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> -Si
mp[((e*f - d*g)*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2)), x] - Dist[(b
*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)), Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[Sim
plify[m + 2*p + 3], 0]

Rule 724

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{x^3 (d+e x)} \, dx &=\int \frac{a e+c d x}{x^3 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx\\ &=-\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac{\int \frac{-\frac{1}{2} a e \left (c d^2-3 a e^2\right )+a c d e^2 x}{x^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{2 a d e}\\ &=-\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac{\left (\frac{c}{a e}-\frac{3 e}{d^2}\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}-\frac{\left (\frac{c^2 d^2}{a}+2 c e^2-\frac{3 a e^4}{d^2}\right ) \int \frac{1}{x \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{8 e}\\ &=-\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac{\left (\frac{c}{a e}-\frac{3 e}{d^2}\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}+\frac{\left (\frac{c^2 d^2}{a}+2 c e^2-\frac{3 a e^4}{d^2}\right ) \operatorname{Subst}\left (\int \frac{1}{4 a d e-x^2} \, dx,x,\frac{2 a d e-\left (-c d^2-a e^2\right ) x}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{4 e}\\ &=-\frac{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{2 d x^2}-\frac{\left (\frac{c}{a e}-\frac{3 e}{d^2}\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{4 x}+\frac{\left (c d^2-a e^2\right ) \left (c d^2+3 a e^2\right ) \tanh ^{-1}\left (\frac{2 a d e+\left (c d^2+a e^2\right ) x}{2 \sqrt{a} \sqrt{d} \sqrt{e} \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\right )}{8 a^{3/2} d^{5/2} e^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.17332, size = 162, normalized size = 0.8 \[ \frac{\sqrt{(d+e x) (a e+c d x)} \left (\frac{\left (-3 a^2 e^4+2 a c d^2 e^2+c^2 d^4\right ) \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a e+c d x}}{\sqrt{a} \sqrt{e} \sqrt{d+e x}}\right )}{\sqrt{d+e x} \sqrt{a e+c d x}}+\frac{\sqrt{a} \sqrt{d} \sqrt{e} \left (a e (3 e x-2 d)-c d^2 x\right )}{x^2}\right )}{4 a^{3/2} d^{5/2} e^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]/(x^3*(d + e*x)),x]

[Out]

(Sqrt[(a*e + c*d*x)*(d + e*x)]*((Sqrt[a]*Sqrt[d]*Sqrt[e]*(-(c*d^2*x) + a*e*(-2*d + 3*e*x)))/x^2 + ((c^2*d^4 +
2*a*c*d^2*e^2 - 3*a^2*e^4)*ArcTanh[(Sqrt[d]*Sqrt[a*e + c*d*x])/(Sqrt[a]*Sqrt[e]*Sqrt[d + e*x])])/(Sqrt[a*e + c
*d*x]*Sqrt[d + e*x])))/(4*a^(3/2)*d^(5/2)*e^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.063, size = 882, normalized size = 4.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x)

[Out]

-1/4*e^2/d^3*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)+1/2*e^4/d^3*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^(1/2
)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*a-1/2*e^2/d*ln((1/2*a*e^2+1/2*c*d^2+c*d*e*x)/(d*e*c)^
(1/2)+(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/(d*e*c)^(1/2)*c-3/8*e^3/d^2*a/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+
c*d^2)*x+2*(a*d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)-e^2/d^3*(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(d
/e+x))^(1/2)-1/2*e^4/d^3*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2+(a*e^2-c*d^2)*(
d/e+x))^(1/2))/(d*e*c)^(1/2)*a+1/2*e^2/d*ln((1/2*a*e^2-1/2*c*d^2+(d/e+x)*c*d*e)/(d*e*c)^(1/2)+(c*d*e*(d/e+x)^2
+(a*e^2-c*d^2)*(d/e+x))^(1/2))/(d*e*c)^(1/2)*c-1/2/d^2/a/e/x^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+5/4/d^3
/a/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)+1/4/d/a^2/e^2/x*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)*c-1/4*d/a
^2/e^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*c^2+1/4*e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*d*e)^(
1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)*c+1/8*d^2/a/e/(a*d*e)^(1/2)*ln((2*a*d*e+(a*e^2+c*d^2)*x+2*(a*
d*e)^(1/2)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2))/x)*c^2-5/4/d^2/a*e*c*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/
2)*x-1/4/a^2/e*c^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*x-1/d/a*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)*c

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{{\left (e x + d\right )} x^{3}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)/((e*x + d)*x^3), x)

________________________________________________________________________________________

Fricas [A]  time = 5.46581, size = 945, normalized size = 4.68 \begin{align*} \left [-\frac{{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \sqrt{a d e} x^{2} \log \left (\frac{8 \, a^{2} d^{2} e^{2} +{\left (c^{2} d^{4} + 6 \, a c d^{2} e^{2} + a^{2} e^{4}\right )} x^{2} - 4 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, a d e +{\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt{a d e} + 8 \,{\left (a c d^{3} e + a^{2} d e^{3}\right )} x}{x^{2}}\right ) + 4 \,{\left (2 \, a^{2} d^{2} e^{2} +{\left (a c d^{3} e - 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{16 \, a^{2} d^{3} e^{2} x^{2}}, -\frac{{\left (c^{2} d^{4} + 2 \, a c d^{2} e^{2} - 3 \, a^{2} e^{4}\right )} \sqrt{-a d e} x^{2} \arctan \left (\frac{\sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, a d e +{\left (c d^{2} + a e^{2}\right )} x\right )} \sqrt{-a d e}}{2 \,{\left (a c d^{2} e^{2} x^{2} + a^{2} d^{2} e^{2} +{\left (a c d^{3} e + a^{2} d e^{3}\right )} x\right )}}\right ) + 2 \,{\left (2 \, a^{2} d^{2} e^{2} +{\left (a c d^{3} e - 3 \, a^{2} d e^{3}\right )} x\right )} \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}}{8 \, a^{2} d^{3} e^{2} x^{2}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="fricas")

[Out]

[-1/16*((c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(a*d*e)*x^2*log((8*a^2*d^2*e^2 + (c^2*d^4 + 6*a*c*d^2*e^2 +
a^2*e^4)*x^2 - 4*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(a*d*e) + 8*(a*
c*d^3*e + a^2*d*e^3)*x)/x^2) + 4*(2*a^2*d^2*e^2 + (a*c*d^3*e - 3*a^2*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2
 + a*e^2)*x))/(a^2*d^3*e^2*x^2), -1/8*((c^2*d^4 + 2*a*c*d^2*e^2 - 3*a^2*e^4)*sqrt(-a*d*e)*x^2*arctan(1/2*sqrt(
c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*a*d*e + (c*d^2 + a*e^2)*x)*sqrt(-a*d*e)/(a*c*d^2*e^2*x^2 + a^2*d^2*e
^2 + (a*c*d^3*e + a^2*d*e^3)*x)) + 2*(2*a^2*d^2*e^2 + (a*c*d^3*e - 3*a^2*d*e^3)*x)*sqrt(c*d*e*x^2 + a*d*e + (c
*d^2 + a*e^2)*x))/(a^2*d^3*e^2*x^2)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(1/2)/x**3/(e*x+d),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: NotImplementedError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(1/2)/x^3/(e*x+d),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError